BAPURAO DESHMUKH COLLEGE OF ENGINEERING, SEVAGRAM

DEPARTMENT OF ELECTRICAL ENGINEERING

Name of the Course: Network Analysis/Network Theory Course code: BEELE304T/BEETC-304T Semester: III Sem (CBS) Branch: Electrical Engineering Academic Year: 2021-22 Name of the Teacher: Prof. K. N. Sawalakhe

Assignment-I with Mapping of COs

Date of Issue: 16/11/2021

Date of Submission: 23/11/2021

CO: 1 Apply mesh current and node voltage methods to analyse electrical circuits.

CO: 2 Apply network theorems for the analysis of networks.

1. Find mesh currents I_1 , I_2 & I_3 in the n/w of fig. 1 (a). Solve by mesh analysis.

2. Determine the current in the 10 Ω resistor of the n/w shown in fig 1 (b).

3. Write the equilibrium equation on mesh basis for the n/w of fig. 2 (a).

4. For the network shown in fig. 3 (a) find the voltages $V_1 \& V_2$. (Solve by Nodal analysis).

5. Explain the term duality & construct the dual circuit for the circuit shown in fig 4 (a).

6. Evaluate current in impedance 2+ j3 using Thevenin's Theorem for Network shown in Fig. 7

7. Evaluate the current through 10 Ω resister by Thevenin's theorem & confirm result by Norton's theorem.

8. State and Prove Maximum Power transfer theorem.

9. Find the impedance Z_L , so that maximum power can be transferred to it in the n/w of fig 5 (b). find maximum power.

10. In the n/w of fig 6 (a) find the current through the 2 Ω resistor & verify the reciprocity theorem.

Fig. 6 (a)

	1	2	3	4	5	6	7	8	9	10
CO1	Х	Х	Х	Х	Х					
CO2						Х	Х	Х	Х	Х