B.E. (Electrical Engineering (Electronics & Power)) Sixth Semester (C.B.S.) Electrical Drives & Their Control

P. Pages : 2 Time : Three Hours			*0020*	KN/KS/16/7479 Max. Marks : 80	
	Note	es: 1. 2. 3. 4. 5. 6. 7. 8. 9.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary.		
1.	a)		re the basic requirements of electrical braking ? Explain rheostatic on motor.	braking of	6
	b)	to stator value of	e, 50Hz, slip ring induction motor has rotor resistance and stand still reat is 0.2 and 1 Ω per phase respectively At full load it run at 1440rpm. Determine to be inserted in rotor in Ω /ph to operate at a speed of 1200 emain constant. Neglect stator resistance & reactance.	ermine the	7
2.	a)	Discuss	starting and running characteristics of D.C. Motors.		6
	b)	coils in Th are conr a) Spo b) Th	e series motor runs at 707 rpm when taking 100A at 85volts and with the series. e resistance of each coil is 0.03Ω and that of the armature 0.04Ω . If the nected in parallel and load torque remains constant, Find eed e additional resistance to be inserted in series with the motor to restore t eed to 707 rpm.	field coils	7
3.	a)	Discuss	different factors governing selection of motors.		6
	b)	100HP fo NO LOA 60HP fo NO LOA	n motor has to perform the following duty type. for 10 minutes AD for 5 minutes or 8 minutes AD for 4 minutes s repeated indefinitely. Determine the suitable size of continuously rated OR	l motor.	7
4.	a)	torque is full speci i) Ma	e, 50Hz, induction motor has a flywheel of 1200 kg-m ² as moment of ine s 100kg in for 10 secs. No load period is long enough for the flywheel to ed. Motor has a slip of 6% at a torque of 50Kg-m Find: aximum torque exerted by the motor eed at the end of deceleration period		8
	b)	Explain	the flywheel effect used in load equalization.		5

5.	a)	What are the advantages of using PLC in industry ? Hence explain ladder programming in PLC ?			
	b)	Explain the working of a PLC with a block diagram. OR	6		
6.		 Write short notes on : i) RMS rating of electrical motor. ii) Types of drives. iii) Difference between PLC's and personal computer. 	4 5 4		
7.	a)	Discuss blow out structure of contractor. Also compare AC and DC contactors.			
	b)	What are the different methods of acceleration control of DC shunt motor ? Explain any one method with circuit diagram.	7		
8.	a)	Explain star-delta starting of 3-pinduction motor using contractors with the neat diagram.	7		
	b)	Explain control and power circuit of pole changing of 3-pinduction motor.			
9.	a)	Draw and explain speed time curve of. i) Main line service ii) Urban service iii) Suburban service	6		
	b)	Explain the effect of unequal wheel diameter on parallel operation of DC shunt and series motors for traction application.	7		
10.	a)	An electric train has an average speed of 42 km/hr on a level track between stops 1400m apart. It is accelerated at 1.7 kmphps and is braked at 3.3 kmphps. Draw the speed time curve for the run. Estimate the energy consumption at the axles of the train per tonne/km. Take tractive resistance constant at 50NW per tonne and allow 10% for rotational inertia.			
	b)	An electric train is to have acceleration and braking retardation of 0.8 km/hr/sec and 3.2 km/hr/sec respectively. If the ratio of maximum to average speed is 1.3 and time for stops 26 sec. Find schedule speed for a run of 1.5km. Assume simplified trapezoidal speed time curve.	6		
11.	a)	Draw block diagram of digital control system and write flow chart of the program.			
	b)	Compared analog and digital control of electric drives. OR	6		
12.	a)	 Which motors are required for following drives ? Explain the reason in brief. i) Rolling Mills. ii) Cranes & Hoist work. iii) Refrigeration & air conditioning. iv) Paper Mills. 	8		
	b)	Discuss control panel design.	5		
