P. Pa Time	nges : e : Thr	2 ee Hours			*09	992*				TKN/KS/16 Max. Mark	5/7425 s : 80	
	Notes	s: 1. 4 2. 5 3. 5 4. 5 6. 5 7. 5 8. 1 9. 4 10. 1 11. 1 12. 1	All questio Solve Ques Solve Ques Solve Ques Solve Ques Solve Ques Due credit Assume su Diagrams a Ilustrate y Use of non	ons carry m stion 1 OR stion 3 OR stion 5 OR stion 7 OR stion 9 OR stion 11 O will be giv itable data and chemic our answe	arks as Questi Q	indicate ons No. 4 ons No. 4 ons No. 4 ons No. 5 tions No. eatness a ver neces ations sho ever neces ations sho	d. 2. 4. 6. 8. 10. . 12. and adec ssary. ould be essary v is perm	juate din given wł vith the ł itted.	nensions. nenever n nelp of ne	ecessary. at sketches.		
1.	a)	Why the	field windi	ing is place	ed on ro	otor in 3¢	alterna	tor.			6	
	b)	3 phase, having ar one coile flux per p	4 pole, 5 mature win side lies in ole require	50 Hz star nding of th n slot num ed to gener	c conne ne two la ber 1, th rate a lin	cted alte ayer type ne other l ne voltag	ernator coils a ies in sl e of 600	has 60 s re short <u>j</u> ot numb 00V.	slots with pitched in er 13, De	h 2 conductor/slot such a way that if termine the useful	and 7	
2.	a)	Define an i) Pitcl iii) Win	d explain 1 factor. ding factor	the follow	ing tern	ns. ii) iv)	Distrit Coil sj	oution factoria	ctor.		6	
	b)	Calculate the pitch factor for the Given winding i) 36 stator slot, 4 pole, coil span 1 to 8. ii) 72 stator slot, 6 poles, coil span 1 to 10 iii) 96 stator slots 6 poles coil span 1 to 12.									7	
3.	a)	Explain tl alternator	he synchro	onous impe	edance r	nethod to	o detern	nination	of voltage	e regulation of an	6	
	b)	A 3-phase star connected alternator is rated at 1600 KVA, 13500v. The armature effective resistance and synchronous reactance are $1.5 \Omega \& 30 \Omega$ respectively per phase. calculate the % regulation for a load of 1280kw at power factor (a) 0.8 leading (b) 0.8 lagging.										
4.	a)	Explain h	ow potier	triangle ca	ın be ob	tained fr	om OC	C & ZPF	°C charac	teristics.	4	
	b)	A 5000K Estimate Leading.	VA, 6600 by ZPF m)V, 39 sta ethod the r If Voc	r conne egulatio 32 3100	ected alte on for a l 50 4900	ernator oad of 5 75 6600	has a re 500A at p 100 7500	esistance ower fac 140 8300	of 0. 79 per phase tor (a) Unity (b) 0.9	10	
				Zpfc	0	1850	4250	5800	7000			

5. a) Describe in detail with suitable diagrams and waveform how slip test is conducted in laboratory to find xd and xq.

TKN/KS/16/7425

6

	b)	A 1500 KVA, star connected 2300v, 3 phase salient pole synchronous generator has reactance xd =1.95 Ω /ph and x _q =1.40 Ω /phase All losses may be neglected. Find the								
		excitation voltage for operation at rated KVA and power factor of 0.85 lagging.								
6	2)	OR Compare the performance of synchronous machine having low short circuit ratio and	F							
0.	a)	machine having high short circuit ratio.								
	b)	Define negative sequence and zero sequence reactance of a synchronous machine. Give laboratory test to find negative sequence and zero sequence reactance.								
7.	a)	Explain V and inverted V curve of synchronous motor.								
	b)	A 75 kW, 3ϕ , γ Connected, 50Hz, 440V cylindrical rotor synchronous motor operates at rated condition with 0.8 p. f. leading. The motor efficiency including field and stator								
		losses, is 95% and $x_5 = 2.5^{\Omega}$. Calculate								
		i) Mechanical power Developedii) Armature currentiii) Back emfiv) Power Angle.								
0	2)	OR CLARKER CONTRACTOR	7							
ο.	a)	Compare 36 synchronous motor with 36 Induction motor.	/							
	b)	Why synchronous motor is not self started?								
9.	a)	Draw nature of S. C. current when 3¢ alternator is suddenly short circuited.								
	b)	Derive the expression for obtaining power angle characteristic of salient pole generator. 7 Explain what do you mean by reluctance power?								
10	a)	Define subtransient, transient and steady state reactance giving equivalent circuit. How 7 can these reactances be found from oscillogram.								
	b)	What is the Roll of Damper winding in synchronous generator & synchronous motor.								
11.		Write short note on.								
		i) Universal motor.								
		ii) Power selsyns position selsyns.								
17		OR								
12.		write snort note on.	7							
		b) Hysteresis motor.	7							
