

Network Analysis

B. E. Third Semester Electrical Engineering Lecture: 03

Prof. Kunal N. Sawalakhe Department of Electrical Engineering

Complex Numbers

Complex Numbers were especially when dealing with frequency dependent sinusoidal sources and vectors to allow complex equations to be solved with numbers that are the square roots of negative numbers, $\sqrt{-1}$.

To represent imaginary number j-operator is used. Eg. j3

Complex Numbers

Then a complex number consists of two distinct but very much related parts, a "Real Number " plus an " Imaginary Number ".

Eg. 3+j4

Complex Numbers using the Rectangular Form

Z=x+jy

Where,

- Z Complex Number representing the Vector
- x Real part or the Active component
- y Imaginary part or the Reactive component
- j is defined by $\sqrt{-1}$

Complex Numbers

Complex Addition and Subtraction

Complex Addition and Subtraction

A + B = (4 + j1) + (2 + j3)A + B = (4 + 2) + j(1 + 3) = 6 + j4

$$A - B = \left(4 + j1\right) - \left(2 + j3\right)$$

Subtraction

Addition

A + B =
$$(4 - 2) + j(1 - 3) = 2 - j2$$

Graphical Addition and Subtraction

Complex Numbers using Polar Form

Complex Numbers using Polar Form

$$A^2 = x^2 + y^2$$

$$A = \sqrt{x^2 + y^2}$$

Also, $x = A.\cos\theta$, $y = A.\sin\theta$

$$\theta = \tan^{-1} \frac{y}{x}$$

Converting between Rectangular Form and Polar Form

Converting

$$6 \angle 30^{\circ} = x + jy$$

Polar Form into Rectangular Form, ($P \rightarrow R$)

However,

$$x = A.\cos\theta$$
 $y = A.\sin\theta$

Therefore,

$$6 \angle 30^{0} = (6\cos\theta) + j(6\sin\theta)$$

= (6 \cos 30^{\circ}) + j(6 \sin 30^{\circ})
= (6 \times 0.866) + j(6 \times 0.5)
= 5.2 + j3

Converting between Rectangular Form and Polar Form

Converting

Rectangular Form into Polar Form, ($R \rightarrow P$)

$$(5.2+j3) = A \angle \theta$$

where:
$$A = \sqrt{5.2^2 + 3^2} = 6$$

and
$$\theta = \tan^{-1}\frac{3}{5.2} = 30^{\circ}$$

Hence,
$$(5.2 + j3) = 6 \angle 30^{\circ}$$

Polar Form Multiplication and Division

$$Z_1 \times Z_2 = A_1 \times A_2 \angle \theta_1 + \theta_2$$

Multiplying together 6 \angle 30o and 8 \angle – 45o in polar form gives us.

$$Z_1 \times Z_2 = 6 \times 8 \angle 30^{\circ} + (-45^{\circ}) = 48 \angle -15^{\circ}$$

https://www.electronics-tutorials.ws