B.E. (Electrical Engineering (Electronics Power)) Third Semester (C.B.S.) Electronic Devices & Circuits

P. Pages : 3 Time : Three Hours			•S *0182* Max.	
	Note	es: 1. A 2. S 3. S 4. S 5. S 6. S 7. S 8. D 9. A 10. II 11. U	Ill questions carry marks as indicated. olve Question 1 OR Questions No. 2. olve Question 3 OR Questions No. 4. olve Question 5 OR Questions No. 6. olve Question 7 OR Questions No. 8. olve Question 9 OR Questions No. 10. olve Question 11 OR Questions No. 12. Due credit will be given to neatness and adequate dimensions assume suitable data whenever necessary. lustrate your answers whenever necessary with the help of n fise of non programmable calculator is permitted.	eat sketches.
1.	a)	Differentia	ate between Zener and avalanche breakdown.	4
	b)	Define: i) Trans	sition capacitance ii) Diffusion capacitance	4
	c)	The avalar voltage V= I _L =0 up	The diode regulates at 50V over a diode current from 5 to 40 =200V, calculate R to allow voltage to regulate load current to I _{L max} . What is I _{L(max})=?	DmA. The supply 5
			OR	
2.	a)	Write show	t note on voltage doubles.	5
	b)	Draw & ex i) Peak iii) Effic	xplain full wave rectifier. Also derive the expression for current ii) Ripple Factor iency	8
3.	a)	Compare (CE, CB, & CC configuration and explain why CE configurat	tion is most useful. 5
	b)	Explain Pa	anch trough effect in transistor.	4
	c)	Explain di	fferent operating modes of transistors.	4
			OR	

1

1

- **4.** a) Explain Eber-Moll model for P-N-P transistor.
 - b) For the circuit shown in figure $I_C = 2mA$, B ± 00 , calculate R $_EV$ $_{CE}$, and stability factor 'S'.

- a) Draw schematic diagram of class B push pull amp^r. also show that overall efficiency of class B. Push pull amplifier is 78.5%.
 - b) What is crossover distortion and how it can be eliminated?
 - c) A class A power amplifier operates from $V_{CC} = 20V$. Draws a no signal current of 5A and feeds a load of 40Ω through step up transformer of $N_2/N_1 = 3.16$ find
 - i) Maximum ac signal power o/p.
 - ii) Maximum dc power input
 - iii) Efficiency.

OR

6. a) Exp		plain the effect of negative feedback on bandwidth and gain of the amplifier.	
	b)	 When negative feedback is applied to an amplifier of gain 100, the over all gain falls to 50. i) Calculate the fraction of the o/p voltage feedback. ii) If this is maintained, calculate the value of the amplifier gain required if the overall gain is to be 75. 	7
7.	a)	Explain RC phase-shift oscillator circuit. Derive the expression for frequency of oscillation.	
	b)	 A crystal oscillator has the following parameter L = 0.33H, C=0.065PE_m =1PF & R=5.5K. Find The series resonant frequency. By what percent does the parallel resonant frequency exceeds the series resonant frequency 	5

iii) Find the Q factor of the crystal.

OR

NRT/KS/19/3311

2

7

5

8.	a)	Draw and explain the construction and working of n-channel JFET.		
	b)	Compare BJT and FET.		
9.		Draw and explain the circuit of DIBO differential amplifier and derive the expression f I_{CQ} , V_{CEQ} , differential gain Ad, input resistance and output resistance.		
		OR		
10.	a)	What is the need of level shifting circuits? Explain any one method of level shifting.	7	
	b) Explain in brief constant current bias circuit and constant mirror circuit.		6	
11.	a)	State & prove De Morgan's Laws.	5	
	b)	Prove that i) $\overline{y} \overline{z} + \overline{w} \overline{x} \overline{z} + \overline{w} x \overline{y} \overline{z} + w \overline{y} \overline{z} = \overline{z}$ ii) ABC+ABC ABC ABC ABC ABG AB $\overline{B} = \overline{A} \overline{C} + (+)$.	6	
	c)	Explain ASCII code with example.	3	
		OR		
12.	a)	Perform the following. i) $(337)_8 = (?)_{gray}$ ii) $(45 \cdot 134)_{10} = ()_{Binary}$ iii) $(2AC)_H = ()_8$ iv) $(95.73)_{10} = ()_{Excess-3}$	8	
	b)	Give Advantage of digital system over analog system.	3	
	c)	Realize X-OR gate using NAND gate.	3	
