B.E. (Electrical Engineering (Electronics \& Power)) Fourth Semester (C.B.S.)

Digital \& Linear Electronics Circuits

P. Pages : 2

NRT/KS/19/3365
Time : Three Hours
0773
Max. Marks : 80

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Assume suitable data whenever necessary.

1. a) Explain in detail the working of a two i / p TTL NAND gate with totem pole output.
b) Implement the following function using 4:1 MUX. $F=m(0,1,2,3,11,14,15)$.

OR

2. a) Simplify the following logic function and realize using minimum number of NAND gates. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{M}(1,2,3,8,10,11,14)+\mathrm{d}(7,15)$.
b) Design a BCD to seven segment decoder from common cathode configuration.
3. a) Explain the working of master-slave JK Flip-Flop and explain how race around condition can be eliminated.
b) Convert :
1) D type Flip-Flop to JK Flip-Flop.
2) SR Flip-Flop of JK Flip-Flop.

OR

4. a) Explain working of positive level triggered S.R. Flip-Flop using NAND gate.
b) Write short note on ROM, EPROM, EEPROM.
5. a) Design full adder using two half adders.
b) Explain the difference bet ${ }^{\mathrm{n}}$ combinational logic circuit and sequential logic circuit with suitable examples.

OR

6. a) Explain the working of ring counter with neat diagram and waveform.
b) Explain the working of 3 bit up-down counter.
7. a) Derive the equation for voltage gain Af in Non-inverting amplifier.
b) Realize the ckt using OP-Amp for the equation $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{1}-2 \mathrm{~V}_{2}+\mathrm{V}_{3}-2 \mathrm{~V}_{4}$.

OR

8. a) What is differentiator. What are its limitation. How they are overcome in practical differentiator.
b) Define following terms.
a) Input offset voltage.
b) Slew rate.
c) CMRR.
d) Input bias current.
9. a) With neat diagram explain precision full wave rectifier.
b) Design a second order active Butterworth low pass filter having cut off frequency of 2 KHz .

OR

10. a) Explain positive and negative clipper using OP-amp.
b) Explain Schmitt trigger using OP-Amp.
11. a) Design a 555 astable multivibrator using IC 555 having output frequency 10 KHz \& duty cycle 25%.
b) Write short notes on IC 723 voltage regular.

OR

12. a) Draw \& explain internal block diagram of IC 555 and explain its working.
b) Write short note on IC 741 .
