B.E. (Electrical Engineering (Electronics & Power)) Seventh Semester (C.B.S.) Control System – II

P. Pages : 3 Time : Three H		3 ee Hours	rs *0248*		NRT/KS/19/3543 Max. Marks : 80	
	Note	s: 1. 4 2. 5 3. 5 4. 5 5. 5 6. 5 7. 5 8. 4 9. 1 10. 0	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Assume suitable data whenever necessary. Illustrate your answers whenever necessary with the help of neat sk Use of non programmable calculator is permitted.	etches.		
1.		Derive the BODE PI	e TRANSFER FUNCTION of RC passive LEAD NETWORK. Dr LOT. Determine the frequency at which maximum phase lead is ob	aw its tained.	13	
2.	a)	State the	comparison between LAG and LEAD compensating network.		7	
	b)	Explain the compensation	he necessity of compensator in control system. Discuss different ty ators.	pes of	6	
3.	a)	A system A = i) Com	is described by $-\begin{bmatrix} -2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -3 \end{bmatrix}$ ment on the stability of the system		2	
	b)	ii) ObtaWrite thei) Stateii) Cano	significance of the following. e Transition Matrix. onical State Model.		7 4	
4.		A linear t equation - $\underline{x} =$ where u is Find : a) State b) Inve c) 10 th d) The $x^{T}(0)$	ime invariant system is represented by the following non – homoge $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \underline{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \underline{u}$ is unit step function. Transition Matrix by CALEY HAMILTON THEOREM. rse of STM at t = 1 – sec. power of STM. solution of state vector assuming $ p = \begin{bmatrix} 1 & 0 \end{bmatrix} $	eneous sta	te 6 2 2 3	

NRT/KS/19/3543

5. a) A control system is represented by the following state model :

	0	1	0		[0]
<u>x</u> =	0	0	1	<u>x</u> +	0 u
	0	-2	-3		1

Comment on the stability of the system and design a feedback controller so that the eigen values of the closed loop system are at -2, -1 ± 1 .

- b) Define and give the significance of the following
 - i) Controllability ii) Observability

OR

6. a) The transfer function is given by -

$$\frac{Y(s)}{U(s)} = \frac{s+2}{s^2+2s+1}$$

- i) Construct the state model in PHASE VARIABLE FORM.
- ii) From the phase variable form obtained in 'Part i', check the controllability and observability.
- b) Explain GILBERT'S TEST of controllability and observability. **3**
- **7.** a) For a unity feedback second order system shown in 'fig. 7 (a)'.

i) Show that ISE(J)
$$=\frac{1}{w_n} \left(\xi + \frac{1}{4\xi} \right)$$

- ii) Find the value of ξ which minimizes ISE.
- iii) Find maximum value of ISE.

b) State and prove PARSEVAL'S THEOREM.

OR

8. a) For a unity feedback control system with G(s) = K / s, find the value of K such that the following performance Index is minimized.

$$J = \int_{0}^{\infty} \left[e^2 + \lambda(e)^2 \right]$$

Assume unit step input and λ is a positive constant.

b) Mention the different types of optimal control problems.

NRT/KS/19/3543

2

5

4

4

10

8

9. a) Derive the describing function of amplifier with dead zone with input – output characteristics shown in 'Fig. 9. (a)'.

b) Compare the describing function and phase plane method for the analysis of non – linear **4** control system.

OR

- **10.** Write short note on **any two**.
 - a) Phenomenon of JUMP RESONANCE in the behaviour of non linear element. **7**
 - b) Stability analysis of describing function method.
 - c) DELTA method to construct the phase trajectories.
- **11.** a) "A continuous time stable system becomes conditionally stable system when converted into sampled data control system". Explain the statement with unity feedback system having 'G(s) = $\frac{K}{S}$ '.
 - b) Check the stability of the following characteristics equation by JURY'S TEST. $F(Z) = 2Z^4 + 7Z^3 + 10Z^2 + 4Z + = 0$

OR

12. a) For the sampled data control system shown in 'fig. 12 (a)' find the output response 'C(K)' **9** if r(t) is a unit – step input.

b) Explain the operation of SAMPLERS AND HOLD DEVICES. State and explain SHANON'S SAMPLING THEOREM.

7

7

7

5