B.E. (Electrical Engineering (Electronics & Power)) Third Semester (C.B.S.) **Network Analysis**

P. Pages : 5	*1731*	NIR/KW/18/3310	
Time : Three Hours		Max. Marks : 80	
Notes : 1.	All questions carry marks as indicated.		

- 2. Solve Question 1 OR Questions No. 2.
 - Solve Question 1 OR Questions No. 2.
 Solve Question 3 OR Questions No. 4.
 - Solve Question 5 OR Questions No. 4.
 Solve Question 5 OR Questions No. 6.
 - Solve Question 5 OR Questions No. 6.
 Solve Question 7 OR Questions No. 8.
 - Solve Question 9 OR Questions No. 0.
 Solve Question 9 OR Questions No. 10.
 - Solve Question 9 Of Questions No. 12.
 Solve Question 11 OR Questions No. 12.
 - 8. Assume suitable data whenever necessary.
 - 9. Use of non programmable calculator is permitted.
- **1.** a) Prove that combination of ideal current source and ideal voltage source in series is equivalent to ideal current source.
 - b) Write mesh equilibrium equations in matrix form for the network shown in fig. 1 (b).

2. a) Find loop currents for the network shown in fig. 2 (a).

b) Find the power lost in the circuit shown in fig. 2 (b) by Mesh Analysis.

NIR/KW/18/3310

6

7

5

3. a) Construct dual for the network shown in fig. 3 (a).

b) Find 'V' from fig. 3 (b) if the branch AB should not carry any current. Use Nodal Analysis. 8

4. a) Define Duality. What are the conditions for a network to be dual and Draw dual of network as shown in fig. 4 (a).

- i) Node voltage's V_A and V_B .
- ii) Power dissipated in Inductor.
- iii) Current supplied by source.

5. a) In the network of fig. 5 (a), the resistance of 8Ω is changed to 4Ω find the change in current 'I' by using Compensation Theorem.

4 2 2

b) Determine Thevenin's and Norton's Equivalent between terminals A & B as shown in fig. 5 (b)

6. a) What is the value of Z_L in n/w shown fig. 6 (a) so as to transfer maximum power to it and hence, find the maximum power transferred.

b) Find 'V' such that current through impedance $(3+j4)\Omega$ is zero as shown in fig. 6 (b) Thevenin's Theorem.

- **7.** a) In the network shown in fig. 7 (a) a steady state is reached with switch 'K' closed. At t = 0, switch 'K' is opened. Find :
 - i) $V_{\text{Kat}} t = 0^+$

ii)
$$\frac{dV_K}{dt}$$
 at t = 0⁺

8

b) In the network shown in fig. 7 (b) switch 'K' is closed at t = 0 connecting battery to an unenergized network. Determine : $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at $t = 0^+$.

8. a) An exponential voltage $4e^{-3t}$ volts is applied at t = 0 to a series R - L - C circuit. Obtain particular solution for current i (t). Assume initially unenergized network refer fig. 8 (a).

b) Obtain Laplace Transform of the following waveform shown in fig. 8 (b).

4

9. a) Define a Driving Point Function. What are its types.

b) What are the necessary conditions for representing a driving point function?

3

6

8

c) Determine the driving point impedance function of a one port network.

b) For the network shown in fig. 10 (b). below find Z_{11} and Z_{12} .

- **11.** a) Derive the condition for reciprocity and symmetry for open circuit parameters.
 - b) For the network shown, in fig. 11 (b) find ABCD parameters and show that the network is reciprocal. **7**

- **12.** a) Compare Series and Parallel Resonant Circuit.
 - b) Three phase impedances $(10+j2)\Omega$, $(20-j2)\Omega$ and $(4+j3)\Omega$ are star connected to R, Y and B phases respectively to a 400V supply. Assume RYB as phase sequence and V_{RY} as reference. Find voltage between star point and neutral of the supply. Find load currents in each phase.

5

8

6

6

7