B.E. (Electrical (Electronics & Power) Engineering) Third Semester (C.B.S.) **Network Analysis**

P. Pages : 5 Fime : Three Hours		*0507*	NRJ/KW/17/4365 Max. Marks : 80
Notes : 1	1.	All questions carry marks as indicated.	
	2.	Solve Question 1 OR Questions No. 2.	
2	3.	Solve Question 3 OR Questions No. 4.	
2	4.	Solve Question 5 OR Questions No. 6.	
4	5.	Solve Question 7 OR Questions No. 8.	
(6.	Solve Question 9 OR Questions No. 10.	
-	7.	Solve Question 11 OR Questions No. 12.	
	0		

8. Assume suitable data whenever necessary.

9. Use of non programmable calculator is permitted.

1. A) Using source transformation convert the circuit shown in fig. 1 (A) to a single source in parallel with single element.

B) Find the current flowing through 2Ω resistance for the network shown in fig. 1 (B).

2. A) Write the mesh equilibrium equation in matrix form for the network shown in fig. 2 (A).

6

7

B) In the network given in fig. 2(B) determine the current flowing through the branch $J2\Omega$ **6** using mesh analysis method.

3. A) In the network shown in fig. 3(A), determine the voltage \overline{V}_b which result's in zero current through $(2+j3)\Omega$ impedance. Use Nodal Analysis.

B) Define the term duality. Construct the dual of network shown in fig. 3 (B).

7

7

7

OR

4. A) Using Nodal Analysis for the fig. 4 (A) find the current in branch A.B.

B) What are the conditions of Duality. Draw the dual network for fig. 4 (B).

NRJ/KW/17/4365

B) Find the current flowing through branch A.B for the network shown in fig. 5 (B) using Thevenin's theorem.

OR

6. A) Calculate current 'I' & verify the reciprocity theorem for the network shown in fig. 6 (A).

100 V - T 12 22 FT 100 V - T \$42 \$3 j4.2 + j1 Fig.6.(A)

B) Find the change in current 'I' in the network shown in fig. 6 (B). When reactance $j2\Omega$ is **7** increased to $j5\Omega$. Use compensation theorem.

3

6

7. A) In the network shown in fig. 7(A), a steady state is reached with 'K' opened. At t = 0, switch 'K' is closed. Find $V_a(0^-)$, $V_b(0^-)$, $V_a(0^+)$, $V_b(0^+)$.

B) Obtain Laplace transform of a train of pulses of height 'K' and a width 'a' time period is 'T' seconds.

8. A) Find the Laplace transform of the isosceles triangular wave shown in fig. 8 A.

B) For the network shown in fig. 8 (B), switch 'k' is changed from position-a to position-b at t = 0. Find i, $\frac{di}{dt}$ at $t = 0^+$.

9. A) Define poles and zeros of a network function. Plot 'pole-zero' diagram in s-plane for the function $V(S) = \frac{3S}{(S+2)(S^2+2S+2)}$ Hence find V(t) from the 'Pole-zero' diagram.

B) Obtain the current transfer ratio for the network shown in fig. 9 (B).

NRJ/KW/17/4365

6

7

- **11.** A) Define ABCD parameter's and derive the condition for reciprocity in terms of ABCD parameter's.
 - B) Obtain Z-parameters of a two-port network shown in fig. 11 (B).

- **12.** A) Compare series and parallel Resonant circuit (minimum 6 points).
 - B) A three phase 4-wire, 208V, CBA system as shown in fig. 12 (B) has a star connected load with $Z_A = 5 \angle 0^{\circ} \Omega$, $Z_B = 5 \angle 30^{\circ} \Omega$, $Z_C = 10 \angle -60^{\circ} \Omega$. Obtain phase currents, line currents and current through neutral wire, with $Z_N = 4 \angle 50^{\circ} \Omega$.

NRJ/KW/17/4365

6

6